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ADMISSIBILITY OF POSSIBILITY FUNCTIONS AND

OTHER NON-PROBABILITY FUNCTIONS IN LINDLEY'S

EXTENSION OF THE DEFINETTI-SAVAGE UNCERTAINTY GAME

I.R. GOODMAN

CODE 421
NAVAL OCEAN SYSTEMS CENTER

SAN DIEGO, CALIFORNIA 9252-50OO

Abstract

One of the key problems remaining in the design of an exoert system - as well a-,s
in Artificial Intelligence models in general - is what uncertainty function or
measure is most appropriate to use. Should one choose a Dempster-Shafer. fuzzy
set, or classical probability approach, among a myriad number of possibi~lties

The purpose of this paper is twofold: First, to clarify LinJley's -xt(nslon of
the "dutch book" argument for probability and related functions over the -no31c of
other possible uncertainty functions. Second, to show that Lindley', conclusions
concerning the inadmissibility of possibility functions and Dempster-Shafer functiow,
were patently incorrect in general. All of this is accomplished by, once and for all,
placing the problem within a rigorous game theoretic setting.

1. INTRODUCTION

In [1], Bacchus et al. have established certain arguments against the bayesian-
ist practiceof assuming or attempting to demonstrate, that degrees of personal belief
must coincide with probability. Their case covers various aspects of bayesian con
ditional probability updating approaches, including the general static dutch book just-
ification for conditionalization, as well as dynamic updating, reflection, andCarnap's,
confirmation approach. But, it is only the first topic that this paper wishes to ad-
dress; the remainder will be left to a future work. It is clear, that despite the in-
vective, Bacchus et al. have not really analyzed in full depth Lindley's results I2].
But, neither has Lindley, despite his additional comments railing against non-prob-
ability procedures [3) ! In addition, recently, Klir [4] has added to the contro,'w9'y
-part of the Cambridge Debate on Uncertainty, but not published there [5J - by oppos-
ing Lindley, not on his own grounds within the setting of Lindley's assumptions , but
rather by appealing (rather attractively) to other criteria. Thcre is no question that
polemics must be put aside and open unbiased an'alysis be carried out on this issue.

Consequently, this paper is devoted to re-examining Lindley's contention that
probability is essentially the only "admissible" uncertainty function within -ational"
context. Since Lindley's argument was couched in seemingly informal ,and at times ,vague
language, the entire problem is restated within a rigorous game-theoretic setting,which
is natural to the issue. It becomes clear that Lindley's use of"admissibility"is a much
stronger concept thafi ordinary admissibility; neverthelesshis first set of conclusions
that the class -of (uniformly - to be explained) admissible uncertainty functions must
coincide with some fixed monotone transform of probability remains valid.ftmever,lt can
be shown that his further conclusions that this implies possibility functions and Demp-
ster-Shafer functions are necessarily inadmissible (in Lindley's uniformsense)in general
is wrong. In a word: probability is preserved when a monotone tor other) transform is
taken within the argument of the operator, but not when it is composed from the outside
with probability. Specifically, it is shown that-there are large classes of fuzzy set
membership functions and their t-conorm possibility extensions(see [6])which are indeed
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admissible completely within Lindley's sense. Furthermore. there is at least one
type of non-admissible possibility measure - Zadeh's max-possibility - which under
many circumstances is the uniform limit of admissibile possibility functions. In
addition, not all Dempster-Shafer belief functions are inadmissible- the positive
pcwtrs (exceeding unity) of probabilities are all admissible Dempster-Shafer belief
functions.

Finally, it is hoped that by putting the dutch book problem within a purely
garie-theoretic setting, additional properties of this game - such as game value,
or upper game value, least favorable priors, minimax uncertainty functions, etc.
can be obtained and utilized. Certainly, there should be room for extending the
game to other types of general loss functions, as well as to include epistemic con-
siderations not touched upon so far. Because of space limitations, a number of topics
have been omitted here and art considered In some detail in [13].

2. NOTATION AND DEFINITIONS

Throughout the remainder of this paper, unless otherwise specified, suppose the
fol lowing obtains

a is a fixed nonvacuous universal set of points w c Ql, with R c P(R), a boolean
algebra with events indicated by a, al,a2 .... ,b,b 1 ,b 2 1... r R, and having the usual

boolean operators:. , conjunction / intersection - v, disjunction / union , and ( )',
negatign / complement. In addition, : represents the usual partial (lattice) order
over W- corresponding to subevent ordering. Conditional events are denoted typically
as (alb) (a being consequent and b antecedent of the event-)-, where each can be inter-
preted in at least three equivalent ways: principal ideal cosets, closed intervals of
events, three-valued logically via DeFinetti's indicator function. (See [7]),83 for
expositions on conditional events.) Taking the third approach, one writes

SI1 iff (alb) occurs at w iff w c a-b

: 0 iff (alb) does not occur at w iff w c a'-b (1)

u iff (afb)'s occurrence at w is undetermined

iff w b'.

In conjunction with the regions for determining the conditional event indicator func-
tion, define functions wi, j c K , wnere

0
K0 = {O ,d l (2)

and d
w (alb) = a-b , w (alb) a'b , w(alb) b' (3)

Although, conditional events will play some role in the development of the un-
certainty game, many of their properties are not needed here. However, it should be
noted that the characterization in (1) is sufficient to show

(alb) = (a-bib) , (aJ) = a , (4)

to which one adds the natural evaluation for any given probability (always assumed
bere no stronger than being finitely additive) p:R - (0,1], [0,1] being the unit
interval.,

p((alb)) = p(alb) d p(a-b)/p(b) ; for p(b) > 0 , (5)

ordinary conditional probability. Denote the space of all conditional events (aOb)

for a,b c R arbitrary, as (RIR). Hence , by (4) , Rc (RIR).
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Introduce also the following multivariable notation, for any given po',itive ir.-

teger n and a..b. c R:
a =(al ... 'an ); .... (bIg..,b n); (alb)d((alIlb I) .. .( bn) (RIR)n on (a ]b)(•) d-

(,(alJbl)(w).:, ,(an bn )(w) )c Kn dj= n) c Kn w (alb) w (ab" n0 n. d 0 n_ 0 j. £a li ) (

W( a_I_1) - (w,-(alIb):j c Ko ,

noting that since (w.(alb):jcK } is a (disjoint, exhaustive) partitioning of i, to
is w(a0lb)

CaTl f:[O,l]xK - R (real line) a betting or score function iff f(-,j) is cor-
tinuously different1able over [0,1, denoting f(s,Y-- f-s-fs , sc[O,1], j:O,1,
with f(-,O) strictly increasing and f(.,l) strictly decreasing over [0,1], so that

0 = f'(,j) , j=Ol ; f(-,u) 0 . (7)

A prime example of a betting function is fo, essentially the case treated in
e.g. (9] leading to probability, where)2

f f X..(s-j) , j:0,1, sc [0,1]
j j= (8): uj ,3 , sc [0,1] ,

where I . are fixed real constants.

nFor any s_ c (O,1 l n t c Ko efn

_ _ = ) f(silt i) (9)
i=l

Then, define the two player zero-sum uncertainty game

Gf - G(N,(I;lOSs f) (lO)

as follows: Player I or Nature, has as Its space of pure strategies

N d {$(alb.)(w): w £ f, Q alb) c (RIR)n , n=l,2.... ) , (11)

each O(a•b)(oa) being a possible outcome/no outcome/undetermined outcome-combination,
determinei by finite sequence of conditional events (ailb) and (. Player 2, or Decision-
maker, has as its space of pure strategies

U d E0,I](RIR) = {q: q:(RIR) - (0,1]) , (12)

where each q in (12) is called an uncertainty function, q(alb), for any (alb) c (RJR),
representing the uncertainty of (alb) occurring, i.e., that w E Q, unknown to Player 2,
is. such that O(alb)(w) = I, i.e., w c a-b. Thus, U certainly contains all conditional
or unconditional possibility functions, probability measures (finitely additive), Demp-
ster-Shafer functions, etc.

Also, for each betting function f, define loss function loss f4 :M -, by

d ^(13)
loss f(q,s(alb_)(c)) = f(q(ajb_),(a1b)(o,)); q(ajb)d(q(allbI)....q(anlbn)),all (alb_),w,q.

Clearly, (13) implies the expansion, for any (ab),w,q
1

lossf(ql(alb)(w)• = I ( I f(q(ailbi)j) ). (14)
j=0 (i: 15i:<n & c c w jail bi

and for any random variable W over Q with prior prob. distribution F, the expected
loss Is

p(qF;(aJb)) d EV(lossf(q,€(alb)(W))) = f Pr(Wcb1 ). • F.(aibi)-f(q(aijbi),j) , (15)
ic•M(b,F) j=O J
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where

F (aIb, pr(Nw (aib)Webi),j=O,lj=l,2,; M(b,F)d(i:l!i~n 6 Pr(Wcbi)>O). (16)

The loss in (13) can be interpreted as the amount incurred by the Decision-
maker when betting function f is agreed to (by players 1 and 2 or outside referee),
finite sequence of (conditional) events (alb) is considered and uncertairity function
q is chosen by the 5ecision-maker to applyito (aib), and in reality, unknown to the
latter,event outcome mechanism is at w c Q; similarly, for the expected loss relative
to w being assigned a random variable W.

Define also, for each (alb) c (RIR) n, the subgame Gf(alb) of Gf, where N is re-
duced to N(alb_) and U to U(aTb_, with lossf similarly restricted,

Gf(ajb) d G((adb),U(ad ) ;lossf); d(a1d(0(alb)(•):Q}; U(alb)d [0,] (alb).
0

Also, by using (4), one can consider the unconditional subgame G (a) of Gf , whereGf(a) 1d Gf(aji_) = G(Al(a)U,(a)1loss f) , (18)

where NWa),U(a) are limited.to events of a and similarly for loss One can also de-fine thefulf-unconditional subgame Cf of Gf I where = a ):wrf) replaces N

and U = LO.1 ]R replaces u, etc.

With the above established, define the uniform counterparts of two basic con-
cepts of game theory, keeping in mind the unconditional counterparts to the'definit-
ions:

(i) For any given uncertainty function qo e U, call qo uniformly bayes relative to
random variable W over Q with prior prob. dist. F, for game bf, fIf is bayes
relative to W for each subgame Gf(alb), for all (aIb) c (RjR)n, n=1,2,.. Hence,

p(q_ ,F;(ajb)) = inf p(q.,F;(aJb)); all (jab). (19)

qcU(alb)

Use the notation that qo = qF,(alb),f

(ii) For any given q c U, call q uniforml admissible for G iff q is admiss-

ible for each subgame' Gf(alb), f eac- a bl_) T (RIR)n, n=1 2... Hen~e,

(-ll (alb))(not true there exists q(aIb),fEU

( l o s s ( qf( l o s s f ( q o , .( a lb ) ( w) ) , a l l w c Qi2 0

with strict inequality holding for at least some w c £l)j. (20)

Finally, for each betting function f, define nondecreasing continuous transform
P f:[0,1] [0,1], with P f(j) = j, j=0,1, where,for all s E [0,l1],

Pf(S) d l/(l-Qf(s)) Qf(s) = f'(s,l)/f'(s,0) . (21)

If f"(sj) exists, j=0,l, with Q'(s) > 0 , for all s c [0,1], then P will be strict-
ly increasing over (0,1]. In particular, this is guaranteed, if f(sS) is convex in s,
for all s c [0,I].
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3. THE BASIC RESULTS
Theorem I. Properties of the subgames Gf(ab_).

Let f be any betting function, n any positive integer, and (alb) c(•ji)
arbitrary. Then:
(i) G f(al b) is equivalent to an S- ame, i.e., player I's space kf(a.Jb), or equival-
ently w •a-b_) (with cardinality !5 3 ) is finite. Player 2's space i'n-the usual prod-

uct topology is compact, as well as being convex and loss is continuous, Thus,
[lossf (q.0 ajb_: q c ii(ab)) is a bounded compact risk set.t

(ii) As a consequence of (i), the classical assumptions of Blackwell & Girshick([lOl,
section 5.2) and Wald ([lIJ, Chapter 3) are all satisfied. (See also [12] ',Chapters 1,
2.), showing Gf(alb):has a game value; a least favorable prior distribution over Q;
for which a diniiax uncertainty measure exists as bayes relative to it; and the class
of all bayes uncertainty functions forms a complete class, among other properties.

(iii) In particular, for any random variable W over Q with distribution F, the bayes
uncertainty function qF,(alb),f satisfies the relaticr.

Pf(qFailba )) = FI(a ibi) , all I c M(b,F) , (22)

aiid, assuming Pf is strictly increasing over [0,1], the corresponding minimal e.pected
loss is

P(qF,(a-bt)f'F;(alb)) = Pr(Wcb)" j= FJt(albi)-f(Pf I(F1 (ai lbi)),j). (23)

ieM(b,F) 3=0

Proof:(i) and (ii) are self-evident. For (iii), apply the usual differentiation tech-
niTque to (15) reiative to variable q(aiIbi). (23) is a result of substituting (22) in
(15).

Remark. Eq.(23) appears promising for developing closed form expressions for game
value, minimax uncertainty function, and least favorable prior, in view of Theorem 1.

Theorem 2. Lindley's first basic result restated and reproved ([2], Theorem 2).

For any choice of betting function such that P is strictly increasing over [0,1]
and any given uncertainty function q c U, the follo~ing statements are equivalent:

(it q is uniformly admissible for Gf n
(ii) q is uniformly bayes for G
(iii) Pfaq is the conditional probability exten'sion of some probability over R.

Proof: ii) implies (i): By the form of bayes uncertainty functions given in Th-orem I
eq.-T22, each is unique for subgame Gf(alb), and hence admissible.

(iii) implies (ii): Retrace thefstfe-ps of proof of Theorem l(iii), noting Pfoq
is a probability over w(alb).

S(ai) implies (iii): Note first that (i) implies q is admissible for Gf(a b) for
all (a b) satisfying two classes: (I):(alb)=((aJb),(a'Ib)) "(n=2), and (II). -alb)=
((ajbT,b,a-b) kn=3), for all a.b c R. In turn, use the fact that admissibility implies
weak local admissibility (see [13] for complete details), so that sketching the basic
properties, eq.(20) yields differential of lossf(q,$(ajb)) with respect to dq(alb)
which cannot be non-positive for all components of dq all) and negative for some one.
Equivalently, this means one cannot have in the same o6-rring sense as above
Jf(q.t(alb))-dqtalb) : 0 ; Jf(q,ý(ajb)) d alossf(q,4(alb))/aq(alb)" (24)

for all (alb) of type (I) or (i1).
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Eq.(24), in turn translates to the conditions det(Jf) 0 for appropriate
rank reductions for cases (1) and (I). This yields:

f'(q(alb).0) fPb(q(a'fib),O)) (2tb )
Case (1): det f'(q(aIb),.) fV(q(a'Ib), )I O,implying P(f W)lb))4P~q(a'Ib))•lI

for all a,b c R.

f '(q(alb),1) fV(q(b),l) f'(q(a-b).1)
Case (IT): det f(q(alb),O) f'(q(b),l) f'(q(a-b),O) =O, (26)

0 f'(q(b).O) f'(q(a-b).O)J

implying

P f(q(alb1Y.Pftq(b)) = Pf q(a-b) (27)

for all a,b E R.

Finally, combining (25) and (27) shows (iii).

Remark. The proof technique for (i) implies (iii) is originally due to Definetti
[9]. By replacing in that proof Cases (1) and (IT) by simply

case(IlI): (aib) = (a,c,avc), a-c = 0, then one obtains
f'(q(a),l) f (q(c),l) f'(q(avc),l)

Case(Ill): det f'(q(a),O) f'(q(c),l) f'(q(avc),l) 0, (28)

_f' (q(a) .0) f' (q(c),O) f' (q(avc)J , )

implying

Pf(q(avc)) = P (q(a)) + P (q(c)) . all a-c 0. (29)
ff f

This proves Pfoq is an unconditional probability over R, which together with the
rt:,adder of the proof of Theorem 2 modified for • remains valid. Thus, Theorem
2 holds for the unconditional subgame f with alr statements appropriately made
into unconditional ones. m

Next, call uncertainty function q general uniformlylunconditional] admissible
iff there exi ts betting function f such that q is uniform unconTon admiss-
ible for Gf R d]

Theorem 3. Lindley's second basic result restated ( [2], Theorem 2 and Lemma 5).

Let q c U be any uncertainty function. Then, the following statements are
equivalent:

(i) q is geheral uniformly[unconditional] admissible.

(ii) There exists a continuous increasing transform P:[0,] - [0,13 with P(j)=j,
j=0,l, such that Poq is a conditional probability [unconditional probability].

Proof: Immediate from the fact that as f runs over all possible betting functions,
P'f runs over all P,s as above, in conjunction with Theorem 2.

Remark. It was Lindley's contention that because of Theorem 3's characterization of
(-general uniform) admissible uncertainty functions, the non-probability-appearing
possibility functions as well as Dempster-Shafer and other uncertainty functions
could not possibly be (general uniform) admissible. But the class of all monotone
increasing continuous etc. transforms on all conditional [or on all unconditional]
probabilities is surprisingly rirh and goes beyond just puuOability(wnen th trans-
form is the identity map). This is snown next.
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In order to present the next results, the concepts of t-conorms and t-possibil-
ity extensions of fuzzy sets (or fuzzy set membership functions, equivalently) are re-
viewed. For further details, see e.g. Goodman & Nguyen ([63, Chapter 2).

A t-conorm is a-semi -group-like.binary operation t:[Oi] 0 . [0,1]. Specifically,
t is associative, commutative, nondecreasing in each argument with t(x,0))x end t(xl)
=1, for all x c (0,1]. If also, t(x,x) > x, all 0 < x < 1, call t archimedean. The
following theorem is extremely important in the next development:

Theorem 4. (Ling's Theorem [14] .)

(i) Let t be any archimedean t-conorm. Then, there exists a continuous increasing
function gt:[Ol -. [0,+-] with g(0)=O such that

t(x~yt = gt- (min(gt(xt+gt(y),gl);l x,y c [0.1]. (30)

(ii) Conversely, if g is any function satisfying the same properties as g above
eq.(30), call g a generator, and any function t defined as in (30), g replicing g9t
yields a legitimate t-conorm which is archimedean.

Remarisand definitions.By utilizing associativity , any t-conorm can be naturally ex-
tended oany tinite- and bý limits, to countably Infinite- ,1umber of arguments,
where, by convention t(x) = x (i.e., identity) for all x c [0,I] . Gy Lino's The-
orew, any archimedean t-conorm's multi-argument extension has the simple form

t(xl Xn) = gt-(min(gt(x)+.. 4 ,t(xnt,90))) all xi : (0,1]. (31)

max is an example of a non-archimedean t-conorm, while probsum, tf ,bndsum are ex-
amples of archimedean t-conorms. among an infinitude of such (aga~n, see [6] ), where
using multivariable notation

dX .. px)] )d .. +x ;l-x=(1-x l-x Y(32)-- -- n---- 1' n)po(X 1  -

all xiyi c [0,1], etc.

probsum(x)=l-prod(l-x) ; gp bsu(X) =-log(l-x), all x c [0,11 * (33)
_ - - prosu

t (x)= min(sum(xP),'l/)P ; gt (x) = xp, all x c (0,I] ; p a 1. (34)
P P

p
bndsum(x)=min(sum(x),l) gn m(x) x (identity) all x r [0,1). (35)

Finally, supposing as usual RI P(fQ), but now that f is finite or .ountatly in-
finite in cardinality, let 6:- - (0,1, be any fuzzy set (membership function) on Q
and t any t-conorm. Then, the t-possibility extension or 6 is •t:R , r JI] given Dy

6t({wj)-d_(w),w e fl- 6t(a)-t((t):ca c a), all a c R. (36)

t-possibility extensions are all thus in j and play a lead role in fuzzy set theory
as well as in random set theory in relating fuzzy sets and possibilities to probab-
abilities (again, see [6] ). tbte that when t is an archimedean t-conorm with gener-
ator a (36) becomes 6t(a) = g- (min(sum(6(a)).gt(M))); 6(a)d(•(,):wca). (37)

Theorem 5- First refutation of Lindley's conclusiors

Let q E U be any unconditional uncertainty function and, as above (from now on)
11 is finite or countably infinite. Then, the following are equivalent:

(i) q is general uniformly unconditional admissible.
(ii) q is the t-possibility extension of some fuzzy set ý:Q - [0,1], where t is archi-

medean with generator gt such that gt06 is a probability function over Q with gt(l)-l-

Proof;(i) implies (ii): Let t have generator gt ý Pf ,(ii) implies(i): Find betting

function f so that Pf --gt * (Both proofs of course use Theorem 3.) U
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Theorem 6. Second refutation of Lindley.

Let 6:0 -• [0,1] be any fuzzy set with O<sup(() )<I. Then, the following are equival-
ent:
et~i) There is an archmedean t-conorm t such that , t is neral uncond. admissible
(ii) The level sets of 6 are all finite. That is. 6- Is,1] is finite, O0s<-1

-1
Proof:(i) implies (ii):- [s,l],for some s being infinite violates Theorem 5(i).

(ii) implies (i): From Theorem 5. need only construct generator 9 satisfying
Theorem 5(ii). This long construction is given in [13], proof of Theorem 5-2.2.

Remark. The t-conorms in (32)-(35) can be used to satisfy Theorem 5(ii)for appropriate
c oice of fuzzy set W When ý) is finite, Theorem 6(ii) is satisfied.

If fuzzy set • satisfies hypothesis of Theorem 6, sum(6(fl))sl, and

card(- 1 [1/n, l/(n-l)])! Kl'-n2 \n=2,3,.. ; Kj > 0 constants. j=1,2, (38)

then, for any fixed positive integer n , the following limit holds uniformly in a:

limn(6tp(a)) = 9.x(a) ; all acR, card(a)sn 0 , a--l (sup(6())) = 0 (39)

Thus, Zadeh's max possibility extension under general circumstances isthe uniform limit
of general uniformly unconditional admissible t-possibility extensions of fuzzy sets.

th Finally, it is stated without proof (see [13],section 6) that the class of
all r powers of any probability measures(conditional or unconditional), for any
r a I, consists of general uniformly admissible Dempster-Shafer belief functions.
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